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ABSTRACT

In the emerging paradigm of open spectrum access, cog-
nitive radios dynamically sense the radio-spectrum environ-
ment and must rapidly tune their transmitter parameters to ef-
ciently utilize the available spectrum. The unprecedented

radio agility envisioned, calls for fast and accurate spectrum
sensing over a wide bandwidth, which challenges traditional
spectral estimation methods typically operating at or above
Nyquist rates. Capitalizing on the sparseness of the signal
spectrum in open-access networks, this paper develops com-
pressed sensing techniques tailored for the coarse sensing task
of spectrum hole identi cation. Sub-Nyquist rate samples are
utilized to detect and classify frequency bands via a wavelet-
based edge detector. Because spectrum location estimation
takes priority over ne-scale signal reconstruction, the pro-
posed novel sensing algorithms are robust to noise and can
afford reduced sampling rates.

Index Terms— spectrum estimation, compressed sens-
ing, sub-Nyquist sampling, wavelet transform, cognitive radio

1. INTRODUCTION

The emerging paradigm of Dynamic Spectrum Access shows
promise to alleviate today’s spectrum scarcity problemby ush-
ering in new forms of spectrum agile wireless networks [1].
Key to this new paradigm are cognitive radios (CRs) that are
aware of and can sense the environments, and perform func-
tions to best serve their users without causing harmful interfer-
ence to other authorized users [2]. As such, the rst cognitive
task preceding any form of dynamic spectrum management
is to develop wireless spectral detection and estimation tech-
niques for sensing and identi cation of available spectrum.

Spectrum sensing in the wideband regime faces consider-
able technical challenges. The radio front-end can employ a
bank of tunable narrowband bandpass lters to search one nar-
row frequency band at a time. In each narrowband, existing
spectrum sensing techniques perform either energy detection
[3] or feature detection [2]. It requires an unfavorably large
number of RF components and the tuning range of each l-

ter is preset. Alternatively, a wideband circuit utilizes a sin-
gle RF chain followed by high-speed DSP to exibly search
over multiple frequency bands concurrently [4]. A major im-
plementation challenge lies in the very high sampling rates
required by conventional spectral estimation methods which
have to operate at or above the Nyquist rate. Meanwhile, due
to the timing requirements for rapid sensing, only a limited
number of measurements can be acquired from the received
signal, which may not provide suf cient statistic when tradi-
tional linear signal reconstruction methods are employed.

This paper aims at fast spectrum sensing at affordable com-
plexity. A couple of key premises are capitalized to alleviate
the stringent sampling requirements in the wideband regime.
First, we take a multi-resolution approach to decompose the
cognitive sensing task into two stages. The rst stage is coarse
sensing to detect non-overlappingspectrum bands and classify
them into black, gray or white spaces, depending on whether
the power spectral density (PSD) levels are high, medium or
low [2]. Based on the spectrum sharing mechanism adopted
[1], the second stage of ne-scale spectral shape estimation
is performed only when needed, and mostly con ned within
the available (narrowband) white spaces to alleviate the sam-
pling requirements. Second, we recognize that the wireless
signals in open-spectrum networks are typically sparse in the
frequency domain. This is due to the low percentage of spec-
trum occupancy by active radios – a fact motivating dynamic
spectrum management. For sparse signals, recent advances in
compressed sensing have demonstrated the principle of sub-
Nyquist-rate sampling and reliable signal recovery via com-
putationally feasible algorithms [5, 6, 7, 8].

Tailored to the above distinct nature of CR sensing, this
paper derives novel compressed sensing algorithms for the
coarse sensing task of spectrum band classi cation. Random
sub-Nyquist-rate samples are employed to formulate an op-
timal signal reconstruction problem, which incorporates the
wavelet-based edge detector we recently developed in [10] to
recover the locations of frequency bands. Because spectrum
location estimation takes priority over ne-scale signal recon-
struction, the novel sensing algorithms are robust to noise and
can afford reduced sampling rates.
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2. SIGNAL MODEL AND PROBLEM STATEMENT

Suppose that a total of B Hz in the frequency range [f0, fN ] is
available for a wideband wireless network. A CR receives the
signal r(t) that occupies N consecutive spectrum bands, with
their frequency boundaries located at f0 < f1 < · · · fN . The
frequency response of r(t) is illustrated in Fig. 1. Depending
on whether the PSD level is high, medium or low, each fre-
quency segment can be categorized into black, gray or white
spectrum spaces [2]. White holes, and sometimes gray spaces,
can be picked by the CR for opportunistic transmission, while
the black holes are to be avoided for interference control.
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Fig. 1. N frequency bands with piecewise smooth PSD.

Suppose that the time window for sensing is t ∈ [0, MT0],
where T0 is the Nyquist sampling rate. Using Nyquist sam-
pling theory, M samples are needed to recover r(t) without
aliasing. A digital receiver converts the continuous-domain
signal r(t) to a discrete sequence xt ∈ CK of length K . The
sampling process can be expressed in discrete-time domain in
the following general form:

xt = ST rt (1)

where S is an M × K projection matrix and rt represents
the M × 1 vector with elements rt[n] = r(t)|t=nT0 , n =
1, . . . , M . Columns {sk}K

k=1 of S can be viewed as a set
of basis signals or matched lters, while the measurements
{xt[k]}K

k=1 are in essence the projection of r(t) onto the ba-
sis. The model in (1) subsumes all sampling schemes yield-
ing linear measurements. For example, S = IM represents
Nyquist-rate uniform sampling, where IM is the size-M iden-
tity matrix; S = FM amounts to frequency-domain sampling,
where FM is the M -point unitary discrete Fourier transform
(FT) matrix. When K < M , reduced-rate sampling arises.
We focus on non-adaptive measurements where S is preset.

The goal of CR sensing is to classify and estimate the
spectrum of r(t) given the sample set xt, where K < M
is possible. Spectrum classi cation refers to identifying the
number of subbands N and their locations {[f i, fi+1]}N−1

i=0 ,
and classifying them into black, gray or white spaces. Spec-
trum estimation, on the other hand, can have different objec-
tives: either to estimate the frequency response of r(t) within
the entire wideband, or con ne the estimation to be within the
identi ed (narrowband) white spaces only. This paper primar-
ily concerns the coarse sensing task of spectrum classi cation.

3. MULTI-STEP COMPRESSED SENSING

Our rst approach to reduced-complexity spectrum sensing
takes the following four steps: i) compressed random sam-
pling to generate measurements xt from r(t); ii) reconstruc-
tion of the frequency response rf = FMrt from xt; iii) esti-
mation of frequency band number N and locations {f i}N−1

i=1

based on r̂f ; and, iv) estimation of the average amplitude of
rf within each identi ed band for spectrum classi cation. It
is worth emphasizing that Step ii) recovers the accurate ne-
resolution signal spectrum rf represented by M frequency
samples at the Nyquist rate, while the available measurement
set xt is of a reduced size of K(< M) elements.

3.1. Sub-Nyquist-rate Sampling

Let F denote the non-zero frequency-domain support of r(t)
in the noise-free case. In open-spectrum networks, it gener-
ally holds that |F| � B [4], indicating the sparseness nature
of r(t). Equivalently speaking, the M ×1 frequency response
vector rf contains on average Kb := �|F|M/B� non-zero
elements when noise free, and Kb � M . The key results
in compressed sensing stated that the sparse vector rf can be
recovered asymptotically from K (≤ M ) samples of r(t), as
long as K ≥ Kb. These samples xt can be generated from (1)
via universal non-uniform sampling [5] or random sampling
[6, 7], both of which can enable perfect recovery of r f when
free of noise. To distinct, we denote a reduced-rate sampling
matrix as Sc of dimension M ×K , where Kb≤K�M . A
simple example of Sc is a selection matrix that randomly re-
tains K columns of the size-M identity matrix, which means
that K −M time instants on the sampling grid are skipped.

3.2. Spectrum Reconstruction

With the K measurements xt = ST
c rt, we now estimate the

frequency response of r(t) in the form of rf = FMr. For
a given linear sampler Sc : CM → CK , we seek a nonlinear
reconstruction function R(·) : CK → CM that offers an ap-
proximate reconstruction of rf ∈ CM from xt ∈ CK based on
the linear transformation equality xt = (ST

c F−1
M )rf ; c.f. (1).

This is a linear inverse problem with sparseness constraint,
which is NP-hard. A conceptually intuitive approach to signal
reconstruction is the Basis Pursuit (BP) technique [9], which
transforms the sparseness constraint on rf into a convex opti-
mization problem solvable by linear programming:

r̂f = arg min
rf

||rf ||1, s.t. (ST
c F−1

M )rf = xt. (2)

Besides BP, a number of ef cient reconstruction methods ex-
ist, including orthogonal matching pursuit (OMP) algorithm
and tree-based OMP (TOMP) algorithm [8]. Since the mea-
surements can be complex-valued,we nd it convenient to use
TOMP in our simulations, but for illustration, formulate our
signal reconstruction problem based on BP, as in (2).
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3.3. Band Location Estimation

Having estimated rf , we turn to the wavelet-based edge de-
tector in [10] for detecting the number and frequency loca-
tions of spectrum spaces. The basic idea is to view the entire
wideband under scrutiny as a train of consecutive frequency
subbands, where the PSD is smooth within each subband, but
exhibits a discontinuous change between adjacent subbands.
These irregularities are in fact edges in PSD, which carry key
information on the locations and intensities of spectrum holes.
To further simplify and expedite the coarse sensing stage, we
approximately treat the spectral amplitudes within each sub-
band to be almost at, at an unknown level αn over the n-th
band. These modeling approximations are invoked to reduce
the overall wideband sensing complexity. If needed, the sens-
ing quality can be re ned after spectrum holes are identi ed.

Based on these modeling assumptions and with reference
to Fig. 1, wideband sensing can be viewed as an edge detec-
tion problem in an image depicted by r̂f in frequency. Edges
in this image correspond to the locations of frequency discon-
tinuities {fi}N−1

i=1 , which are to be identi ed. The wavelet
approach is well motivated for edge detection [11]. Given r̂f ,
we re-cast the edge detector in [10] in discrete form.

Let φ(f) be a wavelet smoothing function with a compact
support. The dilation of φ(f) by a scale factor s is given by

φs(f) =
1
s
φ

(
f

s

)
. (3)

For dyadic scales, s takes values from powers of 2, i.e., s =
2j , j = 1, 2, . . . , J . Let Φs(τ) := F−1{φs(f)} = Φ(sτ)
represent the inverse FT of the wavelet function. The contin-
uous wavelet transform of R(f)(↔ rf ) is given by [10]

WsR(f) = F{Wsr(τ)} = F{r(τ) ·Φ(sτ)}. (4)

MappingWsR(f), r(τ) andΦ(sτ) to their length-M discrete
counterparts ys, rt and Φs respectively, (4) is equivalent to

ys = FMdiag{Φs}rt. (5)

Replacing rt in (5) by its estimate r̂t = F−1
M r̂f , we reach

the estimated wavelet transform

ŷs = FMdiag{Φs}F−1
M r̂f . (6)

The derivative wavelet of rf at scale s is given by zs with
elements {zs[n]}M

n=1 in the form

s
d

df
(WsR(f))↔ zs : zs[n] = ys[n]− ys[n− 1]. (7)

The boundaries {fn}N−1
n=1 can thus be acquired by picking the

local maxima of the wavelet modulus zs, while the band num-
ber N is determined by the number of local peaks [10, 11].

3.4. Frequency Response Amplitude Estimation

The estimated boundaries {fn}N−1
n=1 correspond to N − 1 se-

lected indices {In : fn = f0 + InΔ,Δ = B/M} in the
frequency response vector rf . Elements of rf between a pair
of adjacent indices belong to the same frequency band. The
average frequency response amplitude αn of the n-th band,
can thus be computed as

α̂n ≈ 1
In − In−1 + 1

In∑
i=In−1

|r̂f [i]| , n = 1, . . . , N. (8)

This simple and coarse estimator in (8) allows us to categorize
the detected frequency bands into black, gray, or white spaces
[2], depending on whether {α̂n} are high, medium or low.

4. ONE-STEP COMPRESSED SENSING

To further reduce the implementation complexity of coarse
spectrum sensing, we now ask: can we directly detect and
estimate the frequency band locations from the compressed
measurementsxt in (1), without having to recover the detailed
frequency response rf? We address this question by deriving
signal recovery formulation for wavelet-based edge detection.

Recall from Section 3.3 that the band locations can be re-
covered from the (N−1) peaks of the derivative wavelet mod-
ulus zs ∈ CM . When N � M (which is generally the case),
zs can be treated as a sparse vector, with only a few non-
trivial elements located at frequency band boundaries; c.f., see
Fig. 3 for graphical validation. As such, zs can be recovered
under the sparseness constraint, provided that we can nd a
linear transformation equality linking zs to the compressed
measurement vector xt.

To this end, we rewrite (7) in matrix-vector form as zs =
Γys, where Γ is the differentiation matrix given by

Γ =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0

−1 1
. . . 0

0
. . .

. . .
0 · · · −1 1

⎤
⎥⎥⎥⎥⎦

M×M

. (9)

Putting (9) and (5) together, we obtain:

rt =
(
F−1

M diag{Φs}
)−1

ys =
(
F−1

M diag{Φs}
)−1 · Γ−1︸ ︷︷ ︸

:=G

·zs.

(10)
Noting that xt = ST

c rt, and that zs is sparse, we reach the
following BP-based optimization formulation:

ẑs = arg min
zs

||zs||1, s.t. xt =
(
ST

c G
)
zs. (11)

Subsequently, the band boundaries {fn} can be acquired
from the locations of those non-zero elements in zs, obviating
the involved step of frequency response estimation on r f .
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5. SIMULATIONS

We consider a wide band of interest in the range of f0 +
[50, 150]Δ Hz, where Δ is the frequency resolution. Fig. 2
illustrates the spectral amplitude |R(f)| observed by a CR.
During the observed burst of transmissions in the network,
there are a total of N = 6 bands, with frequency boundaries
at {fn}6n=1 = f0 + [60, 68, 83, 119, 123, 150]ΔHz. Among
these bands (marked in Fig. 2), B1, B3 and B5 have rela-
tively high signal amplitude at levels 16, 20, and 24, respec-
tively, while B2 has low amplitude at a level of 2. The rest two
bands, B4 and B6 are not occupied and are thus white spec-
trum holes. The sampling lower bound is thus K b/M ≈ 40%.

For compressed sensing, the compression ratio K/M is
set to vary from 50% to 100% with reference to the Nyquist
rate. The noise level is n2

w = 8 dB. The sampler S = Sc used
in (1) is uniformly random. Fig. 2 indicates that the signal
recovery quality (via TOMP) improves as K/M increases.

In the wavelet-based edge detector, Gaussian wavelets are
used at four dyadic scales s = 2j , j = 1, 2, 3, 4. Fig. 3 de-
picts the multiscale wavelet products computed from (7) [10].
Edges in the R(f) are clearly captured by the wavelet trans-
form in all curves. As the scale factor sj increases, the wavelet
transform becomes smoother within each frequency band, re-
taining the lower-variation contour of the noisy PSD.

For frequency band location estimation, Fig. 4 depicts
the normalized root mean-square estimation errors (RMSE)

B−1

√∑N−1
n=1 |fn − f̂n|2 with respect to both the compres-

sion ratio K/M and the inverse noise level n−2
w . When either

the number of samples is very small or the noise is very strong,
there exhibits an estimation error oor. Nevertheless, the at-
tained degree of estimation accuracy is bene cial to effecting
CR agility at affordable sampling cost. Robustness to sample
quantization errors is also illustrated.
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Fig. 2. signal frequency response: (top) noise-free |X f |; (rest)
recovered |X̂f | at compressing ratios K/M = 50%, 75%, 1.
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